Current:
MinJun Kim

Image

Name

Prof. MinJun Kim

Affiliation

Southern Methodist University,USA

Email&Website

mjkim@smu.edu

http://bastlabs.org

Profiles

B.S. in mechanical engineering in 1997 from Yonsei University in Korea; M.S. in mechanical engineering from Texas A&M University in 2001; Ph.D. from Brown University in 2005.

Field Of Research

Research Areas

Thermal Science and Fluid Mechanics; Dynamics and Control

Microbiorobotics

Soft robotics

Single molecule biophysics

Single cell analysis

Micro/nanofluidics

 

Ongoing research program can be broadly categorized into three core subject areas: micro/nanorobotics, single cell/single molecule biophysics, and transport phenomena. Although each core program consists of a distinct project, we would like to emphasize their synergistic nature – advances in one core are expected to drive the development of the others. The unifying component of all the cores is “biologically inspired nano/micro engineering.” Rapid advances in science and engineering over the past 20 years have enabled us to manipulate matter down to the atomic level. With this unprecedented level of control over matter extraordinary new technologies are being developed with applications spanning a diverse array of fields ranging from biology to robotics. Today there exist a diversity range of nano/microfabrication techniques that are capable of producing small scale functional materials and devices. These new stimuli responsive devices open up the possibility to probe biology on the length scales where fundamental biological processes take place, such as epigenetic and genetic control of single cells. Currently our lab is actively researching four broad topics revolving around small scale engineering: Microbiorobotics for Manipulation and Sensing, Synthetic Nanopore Fabrication and Single Molecule/Single Cell Analysis, Biologically Inspired Metamaterials for Nano/Optoelectronics, and Swimming and Flying at Low Reynold Number.


Selected Publications

U.K. Cheang, F. Meshkati, H. Kim, K. Lee, H.C. Fu, MinJun Kim, “Versatile microrobotics using simple modular subunits,” Sci. Rep., Vol. 6, 30472, 2016. 

H. Kim, MinJun Kim, “Electric field control of bacteria-powered microrobots (BPMs) using static obstacle avoidance algorithm,” IEEE Trans. Robot., Vol. 32, No. 1, p. 125-137, 2016.

A. Darvish, G. Goyal, R. Aneja, R.V.K. Sundarm, K.D. Lee, C.W. Ahn, K.-B. Kim, P. Vlahovska, MinJun Kim, “Nanoparticle mechanics: deformation detection via nanopore resistive pulse sensing,” Nanoscale, Vol. 8, p. 14420-14431, 2016.

G. Goyal, A. Darvish, MinJun Kim, “Use of solid-state nanopores forsensing co-translocational deformation of nano-liposomes,” Analyst, Vol. 140, No. 14, p. 4865-4873, 2015.

K.J. Freedman, S.R. Haq, M.R. Fletcher, J.P. Foley, P. Jemth, J.B. Edel, MinJun Kim, “Stochastic protein sensing at non-equilibrium capture rate conditions yields accummulation at the nanopore entrance,” ACS Nano, Vol. 8, No. 12, p.12238-12249, 2014.

U.K. Cheang, F. Meshkati, D.H. Kim, MinJun Kim, H. Fu, “Minimal geometric requirements for micropropulsion via magnetic rotation,” Phys. Rev. E, Vol. 90, 033007, 2014.

K.J. Freedman, C.W. Ahn, MinJun Kim, “Detection of long and short DNA using nanopores with graphitic polyhedral edges,” ACS Nano, Vol. 7, No. 6, p5008-5016, 2013.